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Abstract. 3D shape completion for real data is important but chal-

lenging, since partial point clouds acquired by real-world sensors are
usually sparse, noisy and unaligned. Di erent from previous metho ds,
we address the problem of learning 3D complete shape from unaligne
and real-world partial point clouds. To this end, we propose a weakly-

supervised method to estimate both 3D canonical shape and 6-DoF pose
for alignment, given multiple partial observations associated with the

same instance. The network jointly optimizes canonical shapesand poses
with multi-view geometry constraints during training, and can i nfer the
complete shape given a single partial point cloud. Moreover, learned pose
estimation can facilitate partial point cloud registration. Ex periments on
both synthetic and real data show that it is feasible and promisi ng to
learn 3D shape completion through large-scale data without shape and
pose supervision.

1 Introduction

We are interested in the problem of 3D shape completion, which estimas the
complete geometry of objects from partial observations. This task is a prequi-
site for many important real-world applications. For example, complete $iapes
can facilitate automated vehicles to track objects [12] and robots to gure ou
the best pose to grasp objects [29]. Previous works [8,14,33] have succekgf
applied deep learning methods to learn shape priors from large-scalgrghetic
data, which results in improvement of the 3D shape completion task. Howver,
most these prior works have two major limitations: 1) they require the ground-
truth shape for learning, and 2) they assume the input partial point clouds are
aligned and normalized to the canonical frame, in which the object facesofward
and are centered at the origin. In addition, models trained on synthett data do
not transfer well to the real world due to the domain gap.
We aim to use real data for the 3D shape completion task. However, since

there is a lack of real 3D data that comes with su cient high-quality groun d-
truth 3D shapes, we cannot directly adopt these supervised learningnethods
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developed in the synthetic domain. Although there are a few datasets cdaining
real scans, such as KITTI [11] and ScanNet [7], ho e orts are made to explorene
possibility of learning 3D shape completion in a weakly-supervisedashion. There
are three challenges to work on real 3D data, unique from the synthetic orse 1)

No or few ground-truth complete shapes are available for full supervigin. Note
that annotating 3D shapes are more dicult and expensive than annotating

2D images; 2) Partial point clouds acquired by real-world sensors like RGED
cameras or LIDAR are sparse and noisy; 3) Poses and sizes of objects are more
diverse, and partial observations may be occluded by other objects.

In this paper, we address the problem of learning 3D shape completion
from real, unaligned partial point clouds without shape and pose supervien
(Sec 3). The proposed method is weakly-supervised by multi-vieveonsistency
of instances (Sec 4). The key contributions of our work are as follows:

1. We propose a weakly-supervisedapproach to learn 3D shape completion
from unaligned point clouds. Our promising results show that it is feasible
to learn 3D shape completion from large-scale 3D data without shape and
pose supervision.

2. We showcase the extension of our method to tackle the challenging péal
point cloud registration problem.

2 Related work

3D reconstruction from single images 3D shape completion is highly related
to 3D reconstruction from single images, since a partial point cloud can be
obtained from a RGB-D image. Since the problem is ill-posed by naturemany
learning-based approaches are developed to learn shape priors from largeske
data. [6] uses a recurrent 3D CNN to predict a 3D occupancy grid given one
or more images of an object. [27] proposes a di erentiable "view consisteyic
loss and a probabilistic occupancy grid. [10] pioneers the representan of point
clouds as output. However, they all require full supervision from sythetic images
rendered from ShapeNet [4]. Performance on real datasets like Pascal 3D+ [31]
su er from unrealistic ground truth shapes from aligned CAD models.

Thus, [32,37,26,14] focus on reconstructing 3D shapes with weak supenasi
Especially, [26] enforces geometric consistency between the indamdently pre-
dicted shape and pose from two views of the same instance. Di erentiapoint
clouds (DPC) [14] uses a similar strategy to reconstruct point clouds ad de-
vises di erentiable projection of point clouds. However, it is non4rivial to extend
these methods to real-world data, which will be discussed in Sec 3.
3D reconstruction from multiple frames By leveraging consecutive frames,
3D shapes can be reconstructed from RGB images [25,1,9] or depth images [17].
The problem is also known as Structure-from-Motion (SfM). [28,35,23] are -
posed to tackle it with deep learning. Although poses are estimated in bdt SfM

5 We use the term \weakly-supervised" instead of \unsupervised | earning of shape
and pose" [14] to avoid confusion, which are in fact equivalent.
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and our 3D shape completion, the main di erence is that unseen 3D points &
hallucinated in our 3D shape completion while depths are estimated intie SfM.

KinectFusion [17] fuses all the depth data streamed from a Kinect sesor
into a single global implicit surface model of the observed scene ireal-time. It
demonstrates the advantages of maintaining a full surface model comparetb
frame-to-frame tracking. Our method bene ts from the similar idea, but di ers
from it in 2 aspects: 1) The proposed approach is a learning-based framework
based on 3D point clouds only. 2) The trained model can predict the comple
shape from a single point cloud and the relative pose between two distaviews
during inference, which is demonstrated in our experiments.
3D shape completion 3D shape completion is usually performed on partial
scans of individual objects. With the success of deep learning, leaimy-based ap-
proaches show more exibility and better performance compared with gemetry-
based and alignment-based methods. [8] combines a data-driven shapesplictor
and analytic 3D shape synthesis. [33] proposes a variant of PointNet [19] to di-
rectly process point clouds and generate high-resolution outputs. [24devises a
tree-style neural network to generate structured point clouds.

3D shape completion without full supervision is of increasing interst to the
community. [22] netunes the encoder on the target dataset, like KITTI [11],
with a xed generator pretrained on the ground truth SDF representati on of
synthetic data, like ShapeNet [4]. [13] generates half-to-half sequengmirs from
the ground truth complete point clouds of ShapeNet, and learns features Yo
half-to-half prediction and self-reconstruction. [5] trains autoenmders to learn
embedding features of shape on clean, complete synthetic data and ngjgartial
target data. An adaption network is learned to transform the embedding spae
of noisy point clouds to that of clean point clouds with a GAN setup. Howeve,
none of those works deals with unaligned point clouds and relies on complet
synthetic data to pretrain.
Deep learning for point clouds PointNet [19] is the pioneer to directly process
point clouds with a deep neural network, followed by many variants [20,3015].
It extracts features for each point with a shared multi-layer perceptron (MLP),
and outputs with an aggregation function invariant to permutation. Any point-
cloud-based neural network can work as the encoder of our method.

3 Problem

The goal of 3D shape completion is to predict a complete shap& given a
partial observation X . In this work, we represent the partial observation and the
complete shape as point cloudsX 2R" 3andY 2R™ 2, wheren and m are
the number of partial and complete points respectively.

Previous approaches [33,22] have assumed that partial observations are nor-
malized according to ground-truth bounding boxes and transformed inb a pre-
de ned canonical frame, e.g., the forward-facing object centered at the origin.
Past works may also assume the ground-truth shaper9t 2 R™e 3 is avail-
able and train a model in a supervised setting via a permutation-ivariant loss
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function L(Y; Y9, X), such as Chamfer Distance (CD) or Earth Mover Distance
(EMD) [10] to evaluate reconstruction quality. While these ground truth infor-
mation may be available on synthetic data, they may not be available in the
real-world setting. Thus, we build on past works and propose a more general
and challenging setting:

{ We do not assume knowledge of the ground-truth canonical frame for normal-
izing and aligning the partial observations. Instead, we maintain the patial
observations in the sensor coordinate system.

{ We do not assume knowledge of the ground-truth shape.

{ The point cloud observation is captured by a sensor €.g., a LIDAR) from
the real world and can therefore be sparse and also noisy.

{ Instead of ground truth, we have access to a set of unaligned partial obser
vations of the instance, captured at di erent viewpoints by the sensr.

We call this more realistic setting \weakly-supervised shape comption in
the wild". This setting is especially applicable to the real-world setting such as
in autonomous driving or indoor scene navigation, where the robot may obsee
other moving agents from multiple viewpoints and needs to reason abouthe
shape and pose to perform shape completion. In the next section, we prope
our method for tackling weakly-supervised shape completion in the vld.

4 Method

4.1 Overview

We tackle weakly-supervised shape completion in the wild by jointy learning the
canonical shape and pose of the object. The underlying idea is that precting a
complete shapeYsen in the sensorcoordinate system is equivalent to predicting a
complete shapeYc,, in the canonical coordinate systenf and then transforming
it according to a 6-DoF poseTZs!, where Ysen = TSt Yean . But @ key question
remains: how do we learn the complete shape and pose when we do not hae
cess to the ground-truth for either? We leverage the fact that, durirg training, we
have access to multiple observations of the object from di erent vigvpoints. We
know that these observations, while noisy, accurately represent dérent views of
the GT shape. By enforcing that predicted shapes and poses are conssit with
recorded observations, we can train the network in a weakly-supervied fashion
to estimate both the shape and pose from a single observation.

Our training approach is as follows: Given a set of sensor observations ofé
object of interest, f X &,,; XZ,,; ;XM g, we apply a deep autoencoder network
to each observationX ., and predict a canonical shapeYc,, and poseTSei . We
then apply two loss terms based on these outputs to guide the networkd learn
the correct shape and pose: (1) the partial observation points should match
the completed shape transformed by the estimated pose (observation-atching-
shape), and (2) the surface points of the completed shape as viewed by gh

® The canonical frame in our method is not prede ned, but emerges during training.
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3D vector. The inferred rotation matrix and translation form T, Thus, the
predicted complete shape in thesensor coordinate system is calculated as:

Ysen = Tcsaer? Yean = T7(2)f shape (2) 1)

To alleviate the issue of local minima and overcome bad initialization,we
follow prior art and have multiple pose decoder branches in our netwds and
train them with the hindsight loss introduced in DPC [14]. In brief, hindsight
loss is where, for each batch, gradients are only backpropagated to the brahc
with the lowest loss.

4.3 Match partial observation with canonical shape

We now describe the observation-matching-shape loss, which we imghent as
an asymmetric Chamfer-Distance (CD) between the observation point ud and
the completed shape point cloud in the sensor-coordinate space. Theyaametric
CD (Eq 2) between the input observation X s¢, and the output shape Yeen is

1 X L ; )
" - min X
Raend V0 Jix  yii2 2

CD(Xsen 7! Ysen) =

This forces the output canonical shape to completely cover the inpubbservation.
However, it does not guarantee thatYsen is close toX ¢y | €ven a point cloud
that lls the whole 3D space would minimize Eq 2, which is not desired.Thus, we
need to develop a more sophisticated loss term to enforce how the ssar acquires
the point cloud and compute the distance between the input observatin and the
projection of the output, which is described next.

4.4 Project canonical shape to partial observation

We now describe the shape-projection-matching-observation termUsing our
knowledge of how the sensor acquires observations, we can \simulate" vdtn
points on the surface are observed based on the estimated complete shapaint
cloud and the estimated pose. We can then force the "generated” point cladito
match the true observation. We tailor this loss term based on knowledge ofiow
the LiDAR sensor works.

Given a subset point cloud¥sen Of the predicted point cloud Yse,, Which are
on the surface as viewed from the sensor (the \simulated" observation)another
asymmetric CD (Eq 3) between the input X¢, and those surface points is
optimized.

1 X
CD(Qsen 7' Xsen) = - : min jj$  Xjj2 3
JQSEHJ 92 Peen X2 X sen

We introduce a simple, exible and e cient way to infer the surface points.
The point cloud acquired by the LIDAR sensor can be projected to a range
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image, which is essentially the polar-coordinate system of the LiDAR sesor.
The polar coordinate (; ;r ) of a cartesian sensor observation pointX;y;z) is
calculated as Eq 4:

r:px2+y2+zz; =tan ! 3;:sin1§ (4)
wherer is radial distance to the sensor and; are the azimuth and pitch angles,
respectively, of the ray shot from the LiDAR sensor. According to the resolution
of LIDAR (d ;d ), we can discretize (; ) to (bg-c;bgz-c), which forms several
bins. For each bin, the point with the smallest distance is considegd to be on
the surface This is the depth bu er approach widely used for rasterization in
the computer graphics literature.

This \projection" approach is di erentiable and simple to implemen t, since
we can just count the occupied bins and nd the smallest distance ineach. No
voxelization or normalization of the points is needed like in DPC [14], wlich
makes our approach more exible, especially for real data without a normal-
ized scale. Additionally, we can exibly adjust the projection resolution to be
coarser than the real resolution, which helps with noisy and occludedeal-world
data. Furthermore, this method is also e cient as the computation complexity
is O(m), where m is the number of predicted points.

4.5 Multi-view consistency

Both loss terms, observation-matching-shape and shape-projection-mehing-
observation, work not only for the input observation XL, but also works for
all other observations of the instance in the set. Inspired by [26,14], wéever-
age the consistency among multiple views associated with the same tasice to
supervise 3D shape prediction and 6-DoF pose estimation. During traimg, we
sampleM observationsf XL, ;X2 ; ;XM g of one instance within a batch.
One view is selected as theeference denoted by indexk. Intuitively, all obser-
vations share the same complete rigid shape in theanonical coordinate system.
In other words, for any view i, Y/, should be close toYX,, . Therefore, we can re-
placeYJ,, with Y& = Y&, RT +t;, which forces the network to learn a complete
canonical shape matching all the partial views.

The full loss for a given training example f XL, ;i 2 1::Ng with reference
view K is calculated as Eq. 5:

_ X _ _ _ _
L(fXn® =  CD(X&n 7! Y&+ CD (Y& 7! Xien) (5)
i=1

where is a hyper-parameter, which can be adjusted according to the quality
of data. While we could apply multi-view consistency between all posble pairs
(i.e,, make each index in the observation set the reference index and susl
terms), we choose one randomly to reduce training complexity.
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5 Experiments

In this section, we demonstrate our method and several baselines on i new
setting of weakly-supervised shape completion in the wild. We r¢ evaluate our
method on the standard synthetic data benchmark, ShapeNet. We thenlsowcase
the performance of our method on two real-world self-driving datasetdor which

we construct ground-truth complete shapes. Furthermore, we demorngate our

method also works on the task of point cloud registration. Finally, we comg@re
our approach against a fully-supervised oracle.

5.1 Datasets

ShapeNet [4] ShapeNet is a richly-annotated, large-scale dataset of 3D syn-
thetic shapes. We focus on 3 categories: chairs, cars, and airplanes. Wee the
same data and split provided by DPC [14], where the data available for edc
training example is 5 random RGB-D views of the model. We note that this
data only has random viewpoint/orientation, and the translation component of
the view is xed. To acquire partial point clouds in the camera coordinate sys-
tem, we backproject depth maps according to the intrinsic matrix. The average
number of points of the partial point clouds for chairs, cars and airplanes $
3018, 2956, 756 respectively. For evaluation, 8192 ground-truth points are sam-
pled from the surface of the CAD models.

3D vehicle dataset [16] We build a collection of complete vehicle object point
clouds from a large-scale LIDAR dataset for self-driving that contain boundng
box instance annotations for over 1.2 million frames. We generate the groud
truth complete shape as follows: for each static object, we accumulatene LIDAR
points inside the bounding box and determine the object relative oordinates
for the LIiDAR points based on the bounding box center. Since cars are uslly
symmetric, we postprocess data by mirroring the aggregate point cloud ang the
vehicle's heading axis, followed by Gaussian statistical outlier renoval, to acquire
complete shapes for annotated objects. Visualizations of the ground-truttshape
can be seen in Fig 3. There are 13700 annotated objects in total, splitted it
10000/700/3000 for train/val/test. On average, each object is associated with
80 scans, and each scan contains 1163 points. We Iter observations to incled
at least 100 points to avoid overly sparse observations.

SemanticKITTI [2] Instance and semantic annotations for the LIiDAR point
clouds are provided for all sequences of the Odometry Benchmark. Wese Se-
manticKITTI's odometry localization to aggregate partial point clouds of th e
same parked vehicle instance (with at least 512 points on average) into single
vehicle frame and apply radius outlier removal. Following [2], we trah our net-
work on instances generated from sequences 00 to 10, except for seque®8en-
stances which are used as test set. There are 659/229 instances and 51186/16299
observations for training/test. On average, each object is associated wit 95
scans, and each scan contains 1377 points.
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5.2 Tasks and metrics

3D shape completion For shape completion, the algorithm is required to
predict shapes in the sensor coordinate system. Given the groundtith canonical
shape and pose, we can compute the ground-truth shape in the sensor coordte
system. Then, we adopt the standard metrics used in the literatureg[10,33,14,26].
The main metric to evaluate shape completion against ground truth point cbud

Y3 is the Chamfer Distance (Eq 6). The rst term is called the Precision and
the second term is called theCoverage
0 o 1 X T,
CD( sen $ Ysen): . R min Uy Y2
iPsen] ¥2 Ysen
92 ?sen
X (6)
1 N -
MV min jjy> iz
] sen] yg‘ 2Ys%ln 92 sen

Partial point cloud registration Given two partial observations, the algo-
rithm is required to predict the relative pose from one to the other. This task
is more challenging than common point cloud registration. The algorithms are
evaluated by calculating the quaternion distance , or angle di erence, between
the estimated posecpeq and the GT pose gy for all instances in the dataset:

= 2arccosyyred ; Gyt i . Following DPC [14], we report the median of angle dif-
ference and accuracy (the percentage of samples for which 30 ). In addition,
if the translation is predicted, we also report the median of mean-sqare-error
between the prediction and the ground truth.

5.3 Baselines

To our knowledge, there are currently no weakly-supervised methds for shape
completion that take as input a single unaligned partial point cloud. We instead
compare our method against the state-of-the-art single-image 3D reconstation
method, and standard point cloud alignment methods.

DPC [14] DPC is a weakly-supervised method, which is trained on image pairs
to reconstruct 3D point clouds. We compare to their reported resultsof shape
reconstruction on ShapeNet, and adapt their method to range images. We argue
that it is non-trivial to adapt DPC to the "wild" setting, where both pos e ro-
tation and translation are unknown and the shape size is not bounded. We it
their drawbacks as follows: 1) It is assumed that canonical shapes are nouatt
ized into a unit cube; 2) A xed camera distance to the object is provided and
only rotations are considered in the original paper; 3) The projection los only
is sensitive to density and occlusion. Despite these drawbacksve modify DPC
by replacing perspective transformation with polar transformation and scaling
the normalized output by a xed factor to match the real scale, denoted by
DPC-LIDAR. We refer readers to the supplementary for more details.

ICP Since our ground-truth complete shapes are acquired by accumulatinggy-
tial point clouds given ground-truth transformations, we introduce a baseline
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based on Iterative Closest Point (ICP). For two consecutive frames, & calculate
the rigid transformation between two partial point clouds by ICP. Thus, given
a pair of partial point clouds, the transformation can be calculated by accumu-
lating results from ICP. All the partial point clouds can be transformed into a
certain frame and fused. To reduce the accumulated error, we chooséé middle
frame as the reference. For 3D shape completion, the fused point cloud ithe
reference frame is transformed according to the ground-truth pose t@ompare
with the ground-truth complete shape. For point cloud registration, we compare
the transformation from one frame to the reference one with the ground4tuth
transformation. Local ICP [3] and Global ICP [21] are the two ICP algorithms
we compare against. We use the implementation of Open3D [34] and search the
best hyper-parameters on the validation set (0.175 for the distance thrghold in
Local ICP and 0.125 for the voxel size in Global ICP).

5.4 Implementation details

As our synthetic and real datasets are of di erent sizes and come very dierent
distributions, we slightly modify our data input and our implement ation of the
model for each setting:

Input To ease the learning requirements for our model, we preprocesspuat
partial point clouds. Given a partial point cloud in the sensor coordinate system,
we shift the point cloud to be centered at the origin without knowledge of the
ground-truth shape or pose: For ShapeNet, an axis-aligned bounding box inhie
camera coordinate system is calculated, and its center is shiftedotthe origin;
for real data, we rst extract a bounding frustum of the input partial poi nt
cloud, and then centralize the frustum’. After converting to this origin-shifted
coordinate system, the input point cloud is resampled with replacenent to a xed
size, as done in the original PointNet [19]. For ShapeNet and for real LIDAR
datasets, we uniformly resample 3096 and 1024 points, respectively, fromhé
input partial point cloud.

Training During training, 4 observations per instance are sampled in a batch.
Adam is used as the optimizer. For synthetic data, models are trained wh
an initial learning rate of 1e 4 for 300k iterations and a batch size of 32. The
learning rate is decayed by 0.5 every 100K iterations. For real data, modslare
trained with an initial learning rate of 1 e # for 400k iterations and a batch size
of 32. The learning rate is decayed by 0.7 every 100K iterations. Especig]lall
the observations of one instance in a batch are within a window of 20 framedt
takes less than 16 hours to train our model with a GTX 1080Ti. The loss weight

is set to 0.25 and 0.05 for synthetic and real data respectively.

5.5 Results of 3D shape completion

ShapeNet We rst demonstrate shape completion results on ShapeNet. The
chamfer distance, precision and coverage are reported on the test sélfe also

" The resulting coordinate system is similar to 3D mask coordinate introduced in [18].
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\ CD Precision Coverage
DPC 6.26/3.54/4.85  4.19/1.95/2.59 2.07/1.59/2.26
DPCY 13.17/4.73/7.32  8.17/2.52/3.81  5.00/2.20/3.52

DPC (pre-aligned [14]) 3.91/3.47/4.30 - -
DPCY (pre-aligned [14]) | 5.07/4.09/5.86 - -

Ours ‘1.95/2.68/3.33 0.91/1.27/1.69 1.05/1.41/1.64

Table 1: Quantitative results of 3D shape completion on the test set of ShapNet
(airplane/car/chair). All the values are multiplied by 100. We also report t he
original numbers from [14]. Note that they align predicted shapes accordindo
the validation set before evaluating on the test set.

include the chamfer distance of DPC reported by [14]. Besides, we cquare
our approach with DPCY, which predicts both rotation and translation of the
pose. Note that [14] evaluatesshape prediction rather than shape completion
by aligning the predicted canonical shape according to the ground truthof the
validation set. We argue that this evaluation protocol assumes that all the ohects
share the same canonical space and it does not really disentangle shape arnusp.
Table 1 shows the quantitative comparison between our method and the
DPC variants. Despite not having access to the ground-truth translation or size
of the object, our model is able to predict a more accurate complete shap Fig 2
shows the qualitative results. Since planes are usually at and reslin sparse
observations, DPC fails to learn a clean shape while our approach is more robt.
We refer readers to the supplementary for ablation studies and more dails.
Real LIiDAR datasets = We now apply our method to real-world partial LIDAR
scans of vehicles. Table 2a and 2b show the comparison between our methaild
ICP baselines on real LIDAR datasets. Fig 3 showcases the qualitative eailts.
DPC-LIDAR does not converge and performs much worser than our approach,
which implies it is better to process point clouds directly rather than project
them into 2D planes and rely on existing 2D methods. Moreover, compai
to strong ICP baselines, our method shows higher precision and compable
coverage. More results and analysis are provided in the supplementar

| CD Precision Coverage

DPC-LIDAR |0.928 0.489 0.439
Local-ICP 0.315 0.170 0.145
Global-ICP |0.309 0.174 0.135
Ours 0.255 0.083 0.172

CD Precision Coverage

Local-ICP |0.246 0.152 0.094
Global-ICP | 0.213 0.138 0.075
Ours 0.194 0.087 0.107

(a) 3D vehicle dataset (b) SemantickITTI

Table 2: 3D shape completion results on the test sets of real LIDAR datasets.
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Input GT Local-ICP Global-ICP  Ours(shape) Ours(fusion)

Fig. 3: Qualitative results of our method compared against ground-truth ard
ICP on the real datasets (row 1-3: 3D vehicle dataset; row 4-6: SemanticKITI).
All the point clouds are transformed to the ground-truth canonical frame and
visualized at a xed viewpoint. We denote our approach for 3D shape complabn
and point cloud registration by Ours(shape) and Ours(fusion).

| Acc Rot Trans t | Acc Rot Trans t
Local-ICP 84.09 11.33 0.30 Local-ICP 85.29 13.04 0.31
Global-ICP | 83.83 10.69 0.26 Global-ICP | 85.28 10.59 0.23
Ours 97.68 2.37 0.13 Ours 89.37 2.86 0.17
(a) 3D vehicle dataset (b) SemanticKITTI

Table 3: Point cloud registration results on the test sets of real LiDAR datasts.
We report the median of angle di erence and accuracy (the percentage of sapfes
for which 30, as well as the median of translation errort .)

input, we employ the same network to encode the input and decodehte canonical
complete shape without estimating the pose. The Chamfer Distance isalculated
between the output canonical shape and the ground-truth canonical comple
shape. Note that our method with full supervision is identical to PCN-FC [33],
except for unaligned point clouds as input.
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Category | Method | CD Precision Coverage
Airolane Ours 1.95 0.91 1.05
P Ours(Full-Sup) | 1.65  0.77 0.88
Car Ours 2.68 1.27 1.41
Ours(Full-Sup) | 2.04 1.01 1.03
. Ours 3.33 1.69 1.64
Chair
Ours(Full-Sup) | 2.82 1.47 1.35
Real vehicle Ours 0.255 0.083 0.172
Ours (Full-Sup) [0.140 0.064 0.077

Table 4: Shape completion results on the test sets of ShapeNet and our 3D
vehicle dataset. All the values for ShapeNet categories are multiplied y 100.
The full-supervision oracle is denoted byOurs(Full-Sup).

Table 4 shows that there exists a gap between our weakly-supervisedp-
proach and its fully-supervised counterpart. However, the gap is eve smaller
than that between ours and DPC [14]. The Chamfer Distance of the fully-
supervised oracle is almost half of that of our weakly-supervised approacfhis
may be due to the fact that the LIiDAR sensor will only see half of the car by
which it passes, and therefore the partial LIDAR observations alone are ins-
cient to see the other side of the car. To solve this issue, prior knaledge of the
category may help, which we leave for future work.

6 Discussion and Future Work

We have proposed a new setting, weakly-supervised 3D shape complatiin the
wild, which better captures the realistic scenario of being able & infer unknown
shape from real world scans of objects. We demonstrate that this challengg
problem can be tackled by jointly learning both shape and pose with muli-view
consistency. However, there remains much space to improve and ebxpe. From
visualization, we observe that the model tends to generate coarse shapend
miss details, due to the noise of pose estimation. It is also observed training
that the loss calculated on point clouds is more sensitive to the densi compared
to that using 2D projection. More e orts can be made to improve visual gquality
and narrow the gap with fully-supervised methods. Besides, we s PointNet
as the backbone for simplicity and e ciency in this work. Di erentl y designed
networks can be applied to predict shapes and poses separately. Fughmore,
our approach currently requires knowing multiple views of a singlerigid object.
Such \annotations" can be acquired by a 3D detector and tracker. Thus, one
future direction is to study self-supervised or weakly-superised 3D detection
and tracking.
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1 Overview

This supplementary material provides more detailed and thorough analys of
our weakly-supervised approach for 3D shape completion. We hope readerarc
gain more insights into our approach. Sec 2 presents ablation studies to aiyze
our design. We report the results of partial point cloud registration on ShapeNet
in Sec 3, to show more quantitative comparison. Moreover, we showcase &x-
periment where the model is ne-tuned on another category in the witl during
inference in Sec 4. Sec 6 shows more visual comparison on both syntletind
real LIDAR datasets. Last but not least, the sensitivity to initializati on is inves-
tigated in Sec 7.

2 Ablation studies

For ablation studies, we investigate several factors: 1) the shape-pregtion-
matching-observation term, 2) the hindsight loss. Table 1 shows the gantita-
tive results on ShapeNet. It is observed that: 1) Without the shape-pojection-
matching-observation term, the chamfer distance and precision incrase while
the coverage decreases. It shows the e ectiveness of our proposedjaction ap-
proach, and veri es that the observation-matching-shape term only is notenough
as it can not force the generated shape to be close to the observation. On our
3D vehicle dataset, the shape-projection-matching-observation terndecreases
the precision but increases the coverage, which results in the emfer distance
similar to that without it. However, the loss term can improve visual results.
2) Without the hindsight loss, the network is vulnerable to local minima, and
performs worse.

In addition, we investigate the relation between the performance and he
number of views during training. Table 2 shows results on our 3D vehie dataset,
w.r.t numbers of views. With the same number of instances in a batchthe more
the number of views, the better the performance is. We select 4 eiws per instance
as a trade-o between the performance and the computation.
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Category Method CD Precision Coverage

Airplane w/o projection |{2.80 1.98 0.82
P wio hindsight (232 118  1.14
full 1.65 0.77 0.88

Car w/o projection |2.96 1.67 1.29
w/o hindsight (2.82  1.46 1.36

full 268 1.27 1.41

Chair w/o projection |3.94 2.50 1.44
w/o hindsight |{3.80 2.09 1.71

full 3.33 1.69 1.64

Table 1: Ablation studies on ShapeNet. We report shape completion resulten
the test set. All the values are multiplied by 100.

#views #inst \ CD Rot Trans t

2 8 ]0.307 6.185 0.213
4 8 10.261 4.208 0.160
8 8 (0.242 3.995 0.142

Table 2: Ablation studies on our 3D vehicle dataset w.r.t di erent numbers of
views. Note that we report an average of 5 trials instead of the best trial hee.

3 Point cloud registration on ShapeNet

In the main paper, we have showcased that our approach can be extended to
challenging partial point cloud registration on real datasets. In this setion, we
demonstrate the results of this task on ShapeNet. Concretely, we comparthe
relative pose between one view and the target view against the ground trut rel-
ative pose. We argue that our evaluation protocal for pose estimation is bette
than that in DPC [1], as they measure the pose error by rst aligning the canon-
ical pose learned with the groundtruth using ICP. Compared to real datagts
with over 80 scans per instance, it is even challenging for syntheti data, since
there are only 5 views per object in total for training.

We report the accuracy, median angle di erence, and median translation
MSE of our method, DPC, DPCY in Table 3. Our approach outperforms DPC
and DPCY by a large margin on all the categories. For cars, we use a variant
of our approach, where input and output points are both projected into 2D
points and the chamfer distance between 2D projections is optimizedUnlike
chairs and planes, the front and back of cars look similar, which introdees
more pose ambiguity and results in an oversmoothed canonical shape. Thuthe
variant is proposed to tackle the pose ambiguity caused by the symmetryof
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Input(Ours) GT DPC Ours Ours*

Fig. 1: Qualitative results of 3D shape completion on the test set of ShapeNe
All the point clouds are transformed to the ground-truth canonical frame and
visualized at a xed viewpoint.

cars. Fig 1 shows the comparison between the variant@urs ) and the original
implementation.

4  Fine-tuning during inference

To demonstrate that our method can be applied to other categories in the wd,

we experiment on parked trucks of Semantic KITTI. Due to the limit ed amount

of data (14 valid instances), we ne-tuned the model pre-trained on ou 3D ve-
hicle dataset. The CD is 0.2942. The pose accuracy is 86.74, the median angle
di erence is 2.08, and the median translation MSE is 0.15. It indicates the ex-
ibility of our method, which can be optimized during inference. S me examples
are visualized in Fig 2.

5 Clari cation for the GT of our 3D vehicle dataset

Note that we leverage symmetry to generate ground truth complete shapes of
our 3D vehicle dataset. However, for SemanticKITTI, due to lack of GT baxes,
we use the point clouds fused over frames as \partial* GT. Thus, we praide
the quantitative results of shape completion on our 3D vehicle dataset esluated
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Category [Method |Acc( 30 ) Rot Trans t

Airplane DPC 74.17 9.95 -
P DPCY 55.64 2385  0.13

Ours 92.87 1.87 0.01

Car DPC 84.75 6.40 -
DPCY 82.17 8.79 0.05

Ours* 91.03 2.46 -

Chair DPC 80.02 10.96 -
DPCY 70.45 10.17 0.07

Ours 95.82 2.31 0.02

Table 3: Point cloud registration results on the test set of ShapeNet.Ours*
computes losses on projected input and output points.

by \partial* GT. The chamfer distance of our method improves from 0.255 to
0.195, while local ICP and global ICP improve from 0.315 to 0.275 and from
0.309 to 0.274 respectively. The ranking among di erent methods remais the
same. The performance of point cloud registration is not a ected.

6 More qualitative results

To better understand how our method performs compared to baselinesve visu-
alize more results in this section. Fig 3 demonstrates more qualitatie results on
ShapeNet. It can be observed that shapes and poses estimated by our metho
are more accurate than DPC and DPC, especially for chairs and planes. Since
planes are usually at, DPC and its variant su er from sparse 2D observations
and generate many artifacts.

Fig 4 and Fig 5 include more qualitative results on real LIDAR datasets.
Apart from shape completion, our weakly-supervised approach can be easily
extended to point cloud registration. As our method estimates the 6-DoFpose
of the canonical shape, we can estimate the transformation from one partial pot
cloud to another, by rst transforming the source point cloud to the canonical
frame and then to the sensor coordinate system of the target point cloudWe
select the middle frame of a sequence as the target, and fuse all the pil
observations in a sequence according to estimated transformations. Bed point
clouds are visualized in the last column Qurs(fusion)) of Fig 4. Although the
predicted complete shape of our method lacks ne details, the estimted pose
is accurate, and thus the fused point cloud is very close to the groundrtth.
Our method outperforms ICP methods, which implies that the knowledge of the
complete shape eases the challenging problem of partial point cloud regiation,
especially for real, sparse point clouds.
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Input Ground truth Ours(shape) Ours(fusion)

Fig. 2: Qualitative results of our model ne-tuned on SemanticKITTI t rucks.
All the point clouds are transformed to the ground-truth canonical frame and
visualized at a xed viewpoint. We denote our approach for 3D shape compldébn
and point cloud registration by Ours(shape) and Ours(fusion).

Moreover, we show t-SNE visualization of the shape features learned dm
our 3D vehicle dataset in Fig 6. Close features correspond to instancesitiv
similar shapes, which indicates that the learned shape features are @aningful.

7 Sensitivity to initialization

It is intuitive that the randomness of initialization and optimization w ill lead to
very di erent results for not fully-supervised approaches. Thus we would like
to investigate how sensitive our method as well as other not fully-spervised
baselines are to initialization. Table 4 shows the average and standardeViation
of 3 trials on ShapeNet. It is observed that our method shows a lower vasince
compared to DPC [1] in general. In addtion, Table 5 shows the average and
standard deviation of 5 trials on real LiDAR datasets. It is worthy of future
work to study how to lower the variance.

8 Implementation details of DPC-LIDAR

In this section, we describe more details about the implementation othe baseline
DPC-LIDAR. First, We adapt DPC [1] to range images by replacing perspec-
tive transformation with polar transformation. Di erent from syntheti ¢ data,
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Category |Method |~ CD Acc( 30)

DPC | 7.20 (0.81) 76.11 (1.69)
DPCY |17.21 (3.59) 34.83 (18.07)
Ours | 1.95 (0.03) 90.87 (3.40)

DPC | 3.64 (0.13) 83.33 (1.26)

Airplane

car DPCY | 9.66 (4.31) 35.73 (40.47)
Ours | 2.66 (0.05) 49.58 (0.58)
chair DPC | 6.24 (1.64) 57.13 (26.67)

DPCY | 7.38 (0.05) 69.46 (0.91)
Ours |3.33 (0.002) 95.20 (0.65)

Table 4: We report the chamfer distance and the pose accuracy of 3 trials orhe
test set of ShapeNet. The chamfer distance is multiplied by 100. The \&rage
with the standard deviation (in the parentheses) is reported.

Dataset | CD | Acc( 30) Rot Trans t

3D vehicle dataset|0.26 (0.009)|76.54 (19.20) 4.21 (1.72) 0.16 (0.032)
SemanticKITTI 0.20 (0.09) [60.62 (19.17) 11.54 (6.26) 0.21 (0.032)

Table 5: We report the chamfer distance, the pose accuracy, the median gte
di erence and the median translation MSE of 5 trials on the test set of real
LiDAR datasets. The average with the standard deviation (in the parentheses)
is reported.

real data is not normalized and the distance between the partial point abud
and the sensor varies signi cantly (e.g. 5-30 meters). However, the caara dis-
tance is constant for the original DPC. Other weakly-supervised approabes,
like MVC [2], also assume little or no translation in relative pose. Thus, we then
scale the canonical shape predicted by DPC in a unit cube to the real arid

dimensions. The factor is selected as 6.0, as the average length of vekglis
about 5 meters. In addition, a radial o set, which is the average of the max-

mum and the minimum radial distances of the partial point cloud, is provided.

The range image provided as input to DPC is generated directly from theinput

partial point cloud that we take as input for our approach. The resolution is

128 128. However, DPC-LIDAR performs poorly on real data, even with these
modi cations. Fig 7 showcases some examples of DPC-LIDAR on our 3D vehiel
dataset.
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Input Ground truth  Local-ICP Global-ICP  Ours(shape) Ours(registration)

Fig. 4: Qualitative results of our method compared against ground-truth and
ICP on our 3D vehicle dataset. All the point clouds are transformed to the
ground-truth canonical frame and visualized at a xed viewpoint. We denote our
approach for 3D shape completion and point cloud registration byOurs(shape)
and Ours(registration) .
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Input Ground truth  Local-ICP Global-ICP  Ours(shape) Ours(registration)

Fig.5: Qualitative results of our method compared against ground-truth and
ICP on SemanticKITTI. All the point clouds are transformed to the ground -
truth canonical frame and visualized at a xed viewpoint. We denote our ap-
proach for 3D shape completion and point cloud registration byOurs(shape)and

Ours(registration) .



10 J. Gu et al.

Fig. 6: t-SNE visualization of the shape features learned from our 3D vehiel
dataset. 200 samples from di erent instances are randomly chosen from the
validation set. For each sample, we visualize its corresponding GT poircloud.

Input GT DPC- Input GT DPC-
LIDAR LIDAR

Fig. 7: Qualitative results of DPC-LIDAR on the test set of our 3D vehicle
dataset. All the point clouds are transformed to the ground-truth canonical
frame and visualized at a xed viewpoint.
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